A cepa do vírus Zika causa defeitos de nascimento em modelos experimentais.

March 20, 2017
Estudos e Pesquisas com Cannabis
Idioma original

Zika virus (ZIKV) is an arbovirus belonging to the genus Flavivirus (family Flaviviridae) and was first described in 1947 in Uganda following blood analyses of sentinel Rhesus monkeys1. Until the twentieth century, the African and Asian lineages of the virus did not cause meaningful infections in humans. However, in 2007, vectored by Aedes aegypti mosquitoes, ZIKV caused the first noteworthy epidemic on the Yap Island in Micronesia2. Patients experienced fever, skin rash, arthralgia and conjunctivitis2. From 2013 to 2015, the Asian lineage of the virus caused further massive outbreaks in New Caledonia and French Polynesia. In 2013, ZIKV reached Brazil, later spreading to other countries in South and Central America3. In Brazil, the virus has been linked to congenital malformations, including microcephaly and other severe neurological diseases, such as Guillain–Barré syndrome45. Despite clinical evidence, direct experimental proof showing that the Brazilian ZIKV (ZIKVBR) strain causes birth defects remains absent6. Here we demonstrate that ZIKVBR infects fetuses, causing intrauterine growth restriction, including signs of microcephaly, in mice. Moreover, the virus infects human cortical progenitor cells, leading to an increase in cell death. We also report that the infection of human brain organoids results in a reduction of proliferative zones and disrupted cortical layers. These results indicate that ZIKVBR crosses the placenta and causes microcephaly by targeting cortical progenitor cells, inducing cell death by apoptosis and autophagy, and impairing neurodevelopment. Our data reinforce the growing body of evidence linking the ZIKVBR outbreak to the alarming number of cases of congenital brain malformations. Our model can be used to determine the efficiency of therapeutic approaches to counteracting the harmful impact of ZIKVBR in human neurodevelopment.

See the source here.

Authors: Fernanda R. Cugola, Isabella R. Fernandes, Fabiele B. Russo, Beatriz C. Freitas, João L. M. Dias, Katia P. Guimarães, Cecília Benazzato, Nathalia Almeida, Graciela C. Pignatari, Sarah Romero, Carolina M. Polonio, Isabela Cunha, Carla L. Freitas, Wesley N. Brandão, Cristiano Rossato, David G. Andrade, Daniele de P. Faria, Alexandre T. Garcez, Carlos A. Buchpigel, Carla T. Braconi, Erica Mendes, Amadou A. Sall, Paolo M. de A. Zanotto, Jean Pierre S. Peron, Alysson R. Muotri.

This information is presented for educational purposes only. 1Pure. provides this information to provide an understanding of the potential applications of cannabidiol. Links to third party websites do not constitute an endorsement of these organizations by 1Pure and none should be inferred.

....This information is presented for educational purposes only. 1Pure provides this information to give an understanding of the potential applications of cannabidiol. Links to third party websites do not constitute an endorsement of these organizations by 1Pure and none should be inferred. ..Esta informação é apresentada apenas para fins educacionais. 1Pure fornece informações para dar uma compreensão das aplicações potenciais do canabidiol. Links para sites de terceiros não constituem um endosso dessas organizações por parte da 1Pure e nada deve ser inferido. ..1Pure proporciona información para dar una comprensión de las aplicaciones potenciales del canabidiol. Los enlaces a sitios de terceros no constituyen un endoso de estas organizaciones por parte de 1Pure y no se debe inferir nada. ....

Alysson Muotri
Dr. Muotri earned a BSc in Biological Sciences from the State University of Campinas in 1995 and a Ph.D. in Genetics in 2001 from University of Sao Paulo, in Brazil. He moved to the Salk Institute as Pew Latin America Fellow in 2002 for a postdoctoral training in the fields of neuroscience and stem cell biology. He has been a Professor at the School of Medicine, University of California in San Diego since 2008. His research focuses on modeling neurological diseases, such as Autism Spectrum Disorders, using human induced pluripotent stem cells. His lab has developed several techniques to culture human neurons and glia for basic research and drug-screening platforms. He has received several awards, including the prestigious NIH Director’s New Innovator Award, NARSAD, Emerald Foundation Young Investigator Award, Surugadai Award from Tokyo University, Rock Star of Innovation from CONNECT, NIH EUREKA Award among others.

Postagens Relacionadas


EndoPure Hodings, LLC
888 Prospect Suite 200
La Jolla, CA
Estados Unidos